Erlang
- Appeared in:
- 1986
- Influenced by:
- Influenced:
- Paradigm:
- Typing discipline:
- File extensions:
- .erl .ebin .escript
- Versions and implementations (Collapse all | Expand all):
Erlang (named after Danish mathematician Agner Krarup Erlang) is a functional concurrency-oriented general-purpose language designed for highly robust and continuously running systems.
An Erlang program is structured as a collection of lightweight concurrent processes that communicate with one another via message passing. Robustness is supported by means of a supervision strategy in which a certain process, termed a supervisor, monitors other processes and will restart them if they happen to crash. A running Erlang system is itself a collection of Erlang nodes which may be running on a single machine, a cluster of machines, or even on geographically remote machines.
Elements of syntax:
Inline comments | % |
---|---|
Case-sensitivity | case sensitive |
Variable identifier regexp | _?[A-Z][A-Za-z0-9_]* |
Function identifier regexp | [a-z][A-Za-Z0-9_]* |
Variable assignment | Variable = value. |
Grouping expressions | ( ... ) |
Function definition | functionname(Arg1, ...) -> body. |
Function call | modulename:functionanme(Arg1, Arg2, ..., ArgN). |
If - then | if Guard1 -> Statements1; Guard2 -> Statements2; ... true -> DefaultStatements. |
Loop forever | tail_recursive_function() -> tail_recursive_function(). |
Examples:
Hello, World!:
Example for versions erl 5.7.3First line notes that this module must be placed in file called prog.erl. Second line exports function main, of arity 0 (takes no parameters). Third line defines the function: all it does is output “Hello, World!”.
-module(prog).
-export([main/0]).
main() -> io:format("Hello, World!~n").
Factorial:
Example for versions erl 5.7.3This example uses recursive factorial definition. Note that Erlang has no built-in loops, so the example uses a recursive function which starts with larger values of N, but calls itself for N-1 before printing N!. loop(_) is a clause that defines evaluation of loop() when its argument is not an integer or is negative; it is necessary for a proper function definition.
-module(prog).
-export([main/0, loop/1]).
fact(0) -> 1;
fact(N) -> N * fact(N-1).
loop(N) when is_integer(N), N>=0 ->
loop(N-1),
io:format("~B! = ~B~n",[N,fact(N)]);
loop(_) -> ok.
main() -> loop(16).
Fibonacci numbers:
Example for versions erl 5.7.3This example uses iterative definition of Fibonacci numbers, expressed as tail recursion (each number is calculated only once).
-module(prog).
-export([main/0]).
fib(1,_,Res) ->
io:format("~B, ",[Res]);
fib(N,Prev,Res) when N > 1 ->
io:format("~B, ",[Res]),
fib(N-1, Res, Res+Prev).
main() ->
fib(16,0,1),
io:format("...~n").
Fibonacci numbers:
Example for versions erl 5.7.3This example uses Binet’s formula to calculate Fibonacci numbers. The doubles have to be printed with at least one decimal digit, so the output looks like this:
1.0, 1.0, 2.0, 3.0, 5.0, 8.0, 13.0, 21.0, 34.0, 55.0, 89.0, 144.0, 233.0, 377.0, 610.0, 987.0, ...
-module(prog).
-export([main/0]).
fib(0) -> ok;
fib(N) ->
fib(N-1),
SQ5 = math:sqrt(5),
T1 = math:pow(0.5*(1 + SQ5),N),
T2 = math:pow(0.5*(1 - SQ5),N),
io:format("~.1f, ", [(T1-T2)/SQ5]).
main() ->
fib(16),
io:format("...~n").
Quadratic equation:
Example for versions erl 5.7.3fread function can return several values: eof
to mark that the input stream has ended, tuple {ok, value} if the read succeeded, and tuple {error, message} if it failed for any other reason. Thus, when a number is read, it has to be extra processed to stripe it of these things.
-module(prog).
-export([main/0]).
solve(A, B, C) ->
D = B*B - 4*A*C,
if (D == 0) -> io:format("x = ~f~n", [-B*0.5/A]);
true ->
if (D > 0) ->
SQ = math:sqrt(D),
io:format("x1 = ~f~nx2 = ~f", [(-B+SQ)/2/A, (-B-SQ)/2/A]);
true -> SQ = math:sqrt(-D),
io:format("x1 = (~f,~f)~nx2 = (~f,~f)", [-0.5*B/A, 0.5*SQ/A, -0.5*B/A, -0.5*SQ/A])
end
end
.
main() ->
case io:fread("A = ", "~d") of
eof -> true;
{ok, X} ->
[A] = X,
if (A == 0) -> io:format("Not a quadratic equation.");
true ->
case io: fread("B = ", "~d") of
eof -> true;
{ok, Y} ->
[B] = Y,
case io: fread("C = ", "~d") of
eof -> true;
{ok, Z} ->
[C] = Z,
solve(A, B, C)
end
end
end
end.
Comments
]]>blog comments powered by Disqus
]]>